Fun

Econ 3030

Fall 2025

Last Lecture

Outline

- Final Exam
- Fun with Luca's Research Interest
 - Completeness is crazy
 - Incomplete Preferences and Ambiguity
 - 3 Uncertainty and Financial Markets

Final Exam

- Next Monday, 8 December, from 9:30am to 12:30am in WWPH 4940
- Open books and notes (including Problem Sets)
 - no communication with others or internet searches
- Do not stress out

Plan for Today

- What are the consequences of relaxing the assumption that preferences must be complete.
- There are (at least) three reasons to do so:
 - · completeness is descriptively silly,
 - without completeness our models may yield interesting equilibria one would not get otherwise,
 and
 - relaxing assumptions is what economic theorists do and is fun.
- I will focus on incomplete preferences in a stochastic environment, and connect incompleteness to "Knightian" uncertainty or ambiguity.
 - There are other models, but this is just one lecture.

Against Completeness

Completeness does not make sense

- When preferences are complete one can rank any pair of alternatives.
 - there can be many alternatives one does not know how to rank, particularly when consumption bundles are complex.
- Things are even worse with uncertainty, as one may not know how to compare outcomes contingent on events of unknown probability.
- There is a price to pay to get rid of completeness: without it there is no function that "represents" preferences.
 - All I learned in graduate school (maximize this subject to that) could be useless.
- Some people say completeness holds because one MUST choose.
 - This confuses "choice" with "preference"
 - If one is forced to choose when alternatives cannot be ranked that choice loses part of its meaning
 - For example, revealed preference arguments change without completeness.

Lack of Completeness vs. Indifference

Definition

A preference relation \succeq on X is:

- complete if for all $\mathbf{x}, \mathbf{y} \in X$, $\mathbf{x} \succeq \mathbf{y}$ or $\mathbf{y} \succeq \mathbf{x}$ or both.
- Without completeness there exist $\mathbf{x}, \mathbf{y} \in X$ such that neither $\mathbf{x} \succsim \mathbf{y}$ nor $\mathbf{y} \succsim \mathbf{x}$: some alternatives that cannot be ranked.

Definition

For any preference relation \succsim on X,

- the symmetric component \sim is defined by: $\mathbf{x} \sim \mathbf{y} \Leftrightarrow \mathbf{x} \succsim \mathbf{y}$ and $\mathbf{y} \succsim \mathbf{x}$
 - Indifference is not "incomparability": it says you can compare both ways.
 - Unlike indifference, incomparability cannot usually be broken by "adding ε ".
 - Some of the difference could be semantic: "thick indifference curves"

Completeness and Choice

- Given a set of alternatives A, an element \mathbf{x} of this set can be chosen if there is no $\mathbf{y} \in A$ that is strictly preferred to it.
- One can define the *induced choice* correspondence:

$$C_{\succ}(A) = \{ \mathbf{x} \in A : \text{ there is no } \mathbf{y} \in A \text{ such that } \mathbf{y} \succ \mathbf{x} \}$$

• We call any element of $C_{\succ}(A)$ maximal.

Choice from Budget Set

Choose an allocation given prices \mathbf{p} and income w:

$$\mathbf{x} \in C_{\succ}(\mathsf{Budget}\;\mathsf{Set})$$
 if and only if
$$\begin{array}{c} 1. \;\; \mathbf{y} \succ \mathbf{x} \Rightarrow \mathbf{p} \cdot \mathbf{y} > w \\ 2. \;\; \mathbf{p} \cdot \mathbf{x} < w \end{array}$$

Completeness and Revealed Preference

- With completeness, if x is chosen when y is available one concludes x is (weakly) revealed preferred to y.
- Without completeness, if **x** is chosen when **y** is available, one can only conclude **y** is not revealed preferred to **x**.

Remark

Revealed preferences arguments need to be much more careful when one allows incompleteness.

Risk versus Uncertainty

A box contains balls of two colors. A ball will be drawn from this urn and the outcome of that draw will determine what happens.

Risk	Uncertainty
Green Red	Green Red
G=30 $R=70$	$20 \le G \le 50 50 \le G \le 80$
G+R=100	G+R=100
$P(G) = \frac{30}{100}$ $P(R) = \frac{70}{100}$	P(G) = ? $P(R) = ?$

- Risk describes the special case in which one knows the probability of each event precisely.
- Uncertainty describes the more realistic case in which this is not the case.

Expected Utility without Completeness

Theorem (Bewley [1986])

Given a bunch of axioms on \succ , there exists a closed and convex set of probability distributions Π and a continuous function $v:X\to\mathbb{R}$ such that:

$$f \succ g \Leftrightarrow \sum_{s \in S} \pi_s u(f(s)) > \sum_{s \in S} \pi_s u(g(s))$$
 for all π in Π .

where u(h(s)) is the von-Neumann & Morgenstern utility $(\sum_x h_s(x)v(x))$.

Equivalently

$$f \succ g \quad \Leftrightarrow \quad \mathbb{E}_{\pi}(u \circ f) > \mathbb{E}_{\pi}(u \circ g) ext{ for all } \pi ext{ in } \Pi.$$

- Comparisons are done one probability distribution at a time.
- There is no utility function.
- If preferences are complete then Π is a singleton and this is expected utility.
- In Frank Knight (1921) language: completeness characterizes risk while incompleteness characterizes uncertainty (Π is not a singleton).

Expected Utility without Completeness

• Think of the simple world of state contingent amounts of money: vectors in \mathbb{R}^S .

Incomplete Preferences over Money

For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^S$,

$$\mathbf{x} \succ \mathbf{y} \quad \Leftrightarrow \quad \sum_{s=1}^{S} \pi_s u(\mathbf{x}_s) > \sum_{s=1}^{S} \pi_s u(\mathbf{y}_s) \text{ for all } \boldsymbol{\pi} \in \Pi$$

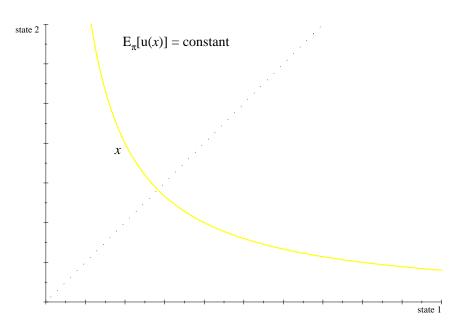
or

$$\mathbf{x}\succ\mathbf{y}\quad\Leftrightarrow\quad \mathbb{E}_{m{\pi}}[u(\mathbf{x})]>\mathbb{E}_{\pi}[u(\mathbf{y})] ext{ for all } m{\pi} ext{ in } \Pi.$$

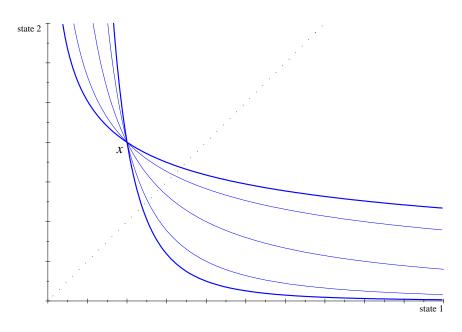
where
$$u(\mathbf{x}) = (u(x_1), u(x_2), ..., u(x_S))$$

Next look at how these preferences work with pictures.

Expected Utility



Bewley Preferences



Indifferent and Not Comparable are not the same

• If x and y are not comparable

$$E_{\widetilde{\pi}}[u(\mathbf{x})] > E_{\widetilde{\pi}}[u(\mathbf{y})]$$
 for some $\widetilde{\pi}$ in Π

and

$$E_{\hat{\pi}}[u(\mathbf{x})] < E_{\hat{\pi}}[u(\mathbf{y})]$$
 for some $\hat{\pi}$ in Π

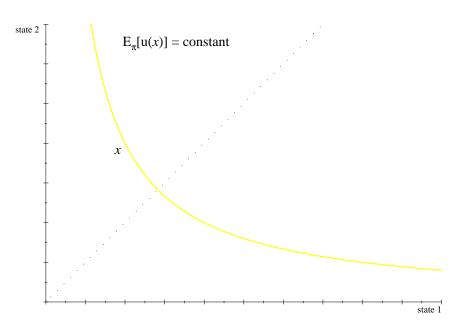
Indifference means

$$E_{\pi}[u(\mathbf{x})] = E_{\pi}[u(\mathbf{y})]$$
 for all π in Π

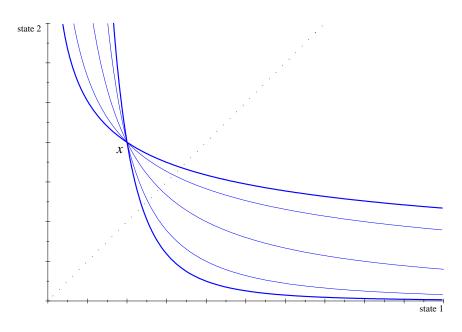
which is a very restrictive condition.

ullet indifference can be "broken" by adding ε , incomparability cannot.

Expected Utility



Bewley Preferences



Choice from a Budget Set

• Given prices **p** and income w the Budget Set is:

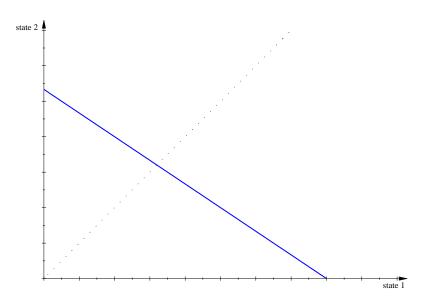
$$B(\mathbf{p}, w) = \{ \mathbf{x} \in X : \mathbf{p} \cdot \mathbf{x} \le w \}$$

• The set of maximal elements is:

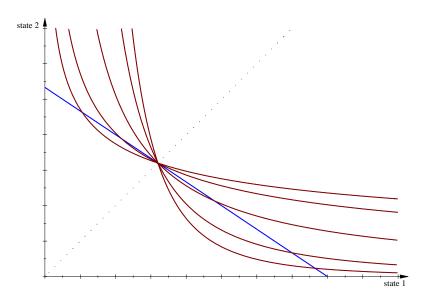
$$\{x \in B : \text{ there is no } y \in B \text{ such that } y \succ x\}$$

- Can we characterize this set?
- Let's try looking at pictures.

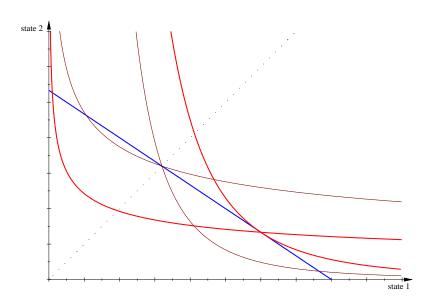
The Budget Set



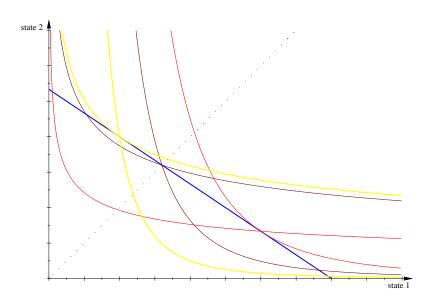
A consumption choice



Another consumption choice

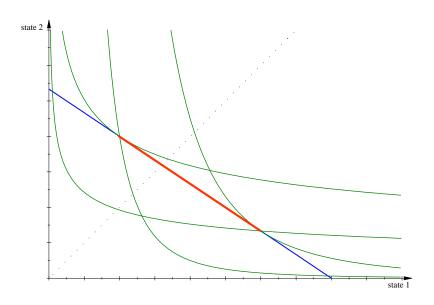


A Third consumption choice



All Maximal Consumption Bundles

Choice Is Indeterminate



How to Find Maximal Choices

If x solves

$$\max_{\mathbf{x} \in \mathsf{Budget}} E_{\hat{\boldsymbol{\pi}}} \left[u \left(\mathbf{x} \right) \right]$$

for some π in Π , then it is maximal (obvious, right?).

- The other direction also holds because the better-than set and the budget set are convex.
 - If a choice is maximal, there is a "separating hyperplane" between the better-than set at that choice and the budget set. That separating hyperplane corresponds to one element of Π .

Result

 \mathbf{x} is maximal if and only if \mathbf{x} solves $\max_{\mathbf{x} \in \text{Budget Set}} E_{\pi}[u(\mathbf{x})]$

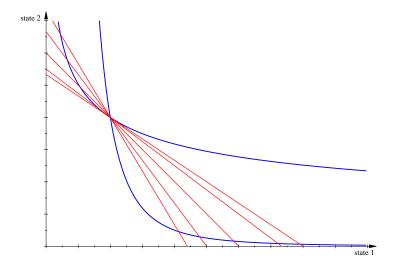
Remark

One can find all the maximal choices by picking a probability distribution and solving the corresponding expected utility maximization problem.

• This result extends to convex choice sets.

Choices Are Robust

The same consumption bundle can be chosen for different prices



• If the price vector changes a little, the same choice will remain maximal.

Wrap Up

- Without completeness one can still do a lot
- Bewley's model of decision making under uncertainty is tractable
 - Leads to interesting implications in general equilibrium theory, moral hazard, and mechanism design.
- One can take incomplete preferences to data.

References

- Bewley (1986): "KnightianDecisionTheory: Part I," Cowles Foundation Discussion Paper. Also in *Decisions in Economics and Finance*, November 2002, Volume 25, Issue 2, pp 79–110.
- Bewely (1987): "Knightian Decision Theory, Part II. Intertemporal Problems" Cowles Foundation Discussion Paper .
- Bewley (1988): "Knightian decision theory and econometric inferences". Cowles
 Foundation Discussion Paper. A shorter version in *Journal of Economic Theory*Volume 146, Issue 3, May 2011, Pages 1134-1147.
- Bewley (1989): "Market Innovation and Entrepreneurship: A Knightian View".
 Cowles Foundation Discussion Paper.